AutoModel¶
sahi.auto_model
¶
Classes¶
AutoDetectionModel
¶
Source code in sahi/auto_model.py
Functions¶
from_pretrained(model_type, model_path=None, model=None, config_path=None, device=None, mask_threshold=0.5, confidence_threshold=0.3, category_mapping=None, category_remapping=None, load_at_init=True, image_size=None, **kwargs)
staticmethod
¶
Loads a DetectionModel from given path.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_type
¶ |
str
|
str Name of the detection framework (example: "ultralytics", "huggingface", "torchvision") |
required |
model_path
¶ |
Optional[str]
|
str Path of the detection model (ex. 'model.pt') |
None
|
config_path
¶ |
Optional[str]
|
str Path of the config file (ex. 'mmdet/configs/cascade_rcnn_r50_fpn_1x.py') |
None
|
device
¶ |
Optional[str]
|
str Device, "cpu" or "cuda:0" |
None
|
mask_threshold
¶ |
float
|
float Value to threshold mask pixels, should be between 0 and 1 |
0.5
|
confidence_threshold
¶ |
float
|
float All predictions with score < confidence_threshold will be discarded |
0.3
|
category_mapping
¶ |
Optional[Dict]
|
dict: str to str Mapping from category id (str) to category name (str) e.g. {"1": "pedestrian"} |
None
|
category_remapping
¶ |
Optional[Dict]
|
dict: str to int Remap category ids based on category names, after performing inference e.g. {"car": 3} |
None
|
load_at_init
¶ |
bool
|
bool If True, automatically loads the model at initialization |
True
|
image_size
¶ |
Optional[int]
|
int Inference input size. |
None
|
Returns:
Type | Description |
---|---|
DetectionModel
|
Returns an instance of a DetectionModel |
Raises:
Type | Description |
---|---|
ImportError
|
If given {model_type} framework is not installed |