Utils¶
sahi.postprocess.utils
¶
Classes¶
Functions¶
calculate_area(box)
¶
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
List[int]
|
[x1, y1, x2, y2] |
required |
calculate_bbox_ios(pred1, pred2)
¶
Returns the ratio of intersection area to the smaller box's area
Source code in sahi/postprocess/utils.py
calculate_bbox_iou(pred1, pred2)
¶
Returns the ratio of intersection area to the union
Source code in sahi/postprocess/utils.py
calculate_box_union(box1, box2)
¶
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
List[int]
|
[x1, y1, x2, y2] |
required |
|
List[int]
|
[x1, y1, x2, y2] |
required |
Source code in sahi/postprocess/utils.py
calculate_intersection_area(box1, box2)
¶
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
ndarray
|
np.array([x1, y1, x2, y2]) |
required |
|
ndarray
|
np.array([x1, y1, x2, y2]) |
required |
Source code in sahi/postprocess/utils.py
coco_segmentation_to_shapely(segmentation)
¶
Fix segment data in COCO format :param segmentation: segment data in COCO format :return:
Source code in sahi/postprocess/utils.py
object_prediction_list_to_numpy(object_prediction_list)
¶
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray of size N x [x1, y1, x2, y2, score, category_id] |
Source code in sahi/postprocess/utils.py
object_prediction_list_to_torch(object_prediction_list)
¶
Returns:
Type | Description |
---|---|
tensor
|
torch.tensor of size N x [x1, y1, x2, y2, score, category_id] |
Source code in sahi/postprocess/utils.py
repair_multipolygon(shapely_multipolygon)
¶
Fix invalid MultiPolygon objects :param shapely_multipolygon: Imported shapely MultiPolygon object :return:
Source code in sahi/postprocess/utils.py
repair_polygon(shapely_polygon)
¶
Fix polygons :param shapely_polygon: Shapely polygon object :return: